Общее уравнение в матричном виде

Общее уравнение кривой можно записать в матричном виде

Канонический вид

Вводом новой системы координат можно привести уравнения кривых второго порядка к стандартному каноническому виду (см. таблицу). Параметры канонических уравнений весьма просто выражаются через инварианты и корни характеристического уравнения (см. выше раздел «Характеристическая квадратичная форма и характеристическое уравнение»).

Вид кривой Каноническое уравнение Инварианты
Невырожденные кривые ( )
Эллипс
Гипербола
Парабола
Вырожденные кривые ( )
Точка
Две пересекающиеся прямые
Две параллельные прямые
Одна прямая

Для центральной кривой в каноническом виде её центр находится в начале координат.

виды кривых:


4789739926317946.html
4789809552336422.html
    PR.RU™